Anomaly Base Network Intrusion Detection by Using Random Decision Tree and Random Projection: A Fast Network Intrusion Detection Technique
نویسندگان
چکیده
Network Intrusion Detection Systems (NIDSs) have become an important component in network security infrastructure. Currently, many NIDSs are rule-based systems whose performances highly depend on their rule sets. Unfortunately, due to the huge volume of network traffic, coding the rules by security experts becomes difficult and time-consuming. Since data mining techniques can build network intrusion detection models adaptively, data mining-based NIDSs have significant advantages over rule-based NIDSs. Network and system security is of paramount importance in the present data communication environment. Hackers and intruders can create many successful attempts to cause the crash of the networks and web services by unauthorized intrusion. New threats and associated solutions to prevent these threats are emerging together with the secured system evolution. Network Intrusion Detection Systems are one of these solutions. The main function of NIDSs is to protect the resources from threats. It analyzes and predicts the behaviors of users, and then these behaviors will be considered an attack or a normal behavior. We use Random projection and Random Tree to detect network intrusions.
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملراهکار ترکیبی نوین جهت تشخیص نفوذ در شبکههای کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی
In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...
متن کاملStudy of Tree Base Data Mining Algorithms for Network Intrusion Detection
Internet growth has increased rapidly due to which number of network attacks have been increased. This emphasis importance of network intrusion detection systems (IDS) for securing the network. It is the process of monitoring and analyzing network traffic for detecting security violations many researcher suggested data mining technique such as classification, clustering ,pattern matching and ru...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملAttack Detection over Network based on C45 and RF Algorithms
In this paper, Intrusion detection is to detect attacks(Intrusions) against a computer system. In the highly networked modern world, conventional techniques of network security such as cryptography, user authentication and intrusion prevention techniques like firewalls are not sufficient to detect new attacks. In this paper, we perform experiments on the kddcup99 data set. We perform dimensiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Network Protocols & Algorithms
دوره 3 شماره
صفحات -
تاریخ انتشار 2011